Robot-Supported Collaborative Learning (RSCL): Social Robots as Teaching Assistants for Higher Education Small Group Facilitation

From frontiers

Robot-Supported Collaborative Learning (RSCL): Social Robots as Teaching Assistants for Higher Education Small Group Facilitation

Introduction

 

Classrooms in the twenty-first century are slowly being transformed from frontal lectures halls filled with passive students, to collaborative small groups actively participating in project based learning (Helle et al., 2006; Kokotsaki et al., 2016). Studies have shown that such active participatory learning is more effective in content retention (Al-Balushi and Al-Aamri, 2014) and engagement (Fernandes et al., 2014). Thus, emphasis has been diverted to so-called twenty-first century skills (Crane, 2003; Saavedra and Opfer, 2012; Trilling and Fadel, 2012), with focus on the 4C super-skills, i.e., communication, collaboration, creativity, and critical thinking (Shulman, 1986; Kivunja, 2015). This focus has created several new pedagogies, such as to provide students with the opportunity, within the classroom, to observe, imitate, and practice critical agency, and reflect upon it (ten Dam and Volman, 2004); collaborate by learning to share tasks and resources and be responsible for their tasks (Lai et al., 2017); engage in inter-, trans-, and cross-disciplinary approaches to promote creativity (Harris and de Bruin, 2018); and use project-based learning as the basis for improving communication skills (Saenab et al., 2018).

 

In higher education, the proliferation of massive online open courses (MOOCs) (Bozkurt et al., 2017) has not lived up to its initial expectation (Khalil and Ebner, 2014; Thomas and Thorpe, 2019). However, the emergence of the “flipped classroom” paradigm (Gilboy et al., 2015; Schmidt and Ralph, 2016), in which students learn the material at home via on-line learning platforms and then discuss and practice it in small groups in the classroom, has been shown to be highly effective (Chen and Chen, 2015; Thomas and Thorpe, 2019).

 

These paradigms have started to reshape the role of the lecturer in higher education, wherein the role of group facilitator has become an important aspect of teaching in such scenarios (Franco and Nielsen, 2018). Group facilitation involves the mediation of the material via encouragement of communication, active participation, and discussion of all the group members (Phillips and Phillips, 1993). Best practices involve promotion of reflection and action (Franco and Nielsen, 2018) and maintaining engagement density (Matsuyama et al., 2015).

 

These changes to classic teaching methods have also introduced new challenges as large classrooms, restructured as several small discussion groups, demand the attention of the lecturer, and her TAs (Moust and Schmidt, 1994). While on-line discussion forums have prospered in recent years (Pendry and Salvatore, 2015; Yang et al., 2015; Chiu and Hew, 2018), with AI assisting in managing such forums (Goel and Joyner, 2017), studies have shown that personal face-to-face interactions and discussions in small groups have their advantages (Chen and Chen, 2015; Thomas and Thorpe, 2019). The question of scaling-up group facilitation is thus of prominent importance.

 

Concurrently, social robots have progressed drastically in the last decade, especially in the field of education (Mubin et al., 2013; Brown and Howard, 2014; Gordon et al., 2015; Belpaeme et al., 2018b). Compared to tablets and screens, social robots have been shown to convey more learning gains (Wainer et al., 2006; Leyzberg et al., 2012; Li, 2015; Luria et al., 2017) and evoke more emotional expressions (Spaulding et al., 2016). They have been used to teach science (Shiomi et al., 2015), math (Brown and Howard, 2014), languages (Kory and Breazeal, 2014; Belpaeme et al., 2015; Hein and Nathan-Roberts, 2018), and even nutrition (Short et al., 2014). Moreover, they have been used to promote meta-cognitive skills such as curiosity (Gordon et al., 2015; Ceha et al., 2019) and growth mindset (Park et al., 2017). Social robots in education have taken different roles. They have been used as peers or companions in learning with the students (Okita et al., 2009), or tutors in which the robot teaches students (Belpaeme et al., 2018b). Moreover, social robots have been used as teachers using frontal lecture mode (Sisman et al., 2018), one-on-one interaction (Short et al., 2014; Gordon et al., 2015) and even in two-person dialogues (Tahir et al., 2014). Several studies have addressed how a single robot can interact with small groups of children (Leite et al., 2015; Strohkorb et al., 2015), elderly (Matsuyama et al., 2008), and adults (Matsuyama et al., 2015). More specifically, several studies examined possible roles of social robots in group interaction (Jung et al., 2015; Shen et al., 2018; Alves-Oliveira et al., 2019; Correia et al., 2019; Oliveira et al., 2019).

 

These advances in social robots resulted in their slow introduction into the educational system (Belpaeme et al., 2018a; Kory-Westlund and Breazeal, 2019) and into homes (Scassellati et al., 2018). Many studies have focused on young children, from preschoolers (Kory and Breazeal, 2014), through elementary school (Leite et al., 2015), and adolescents (Björling et al., 2019), with special interest in children with Autism (Scassellati et al., 2018). In recent years, several applications of social robots in higher education have started to emerge (Brown and Howard, 2014; Edwards et al., 2016; Deublein et al., 2018). Pfeifer and Lugrin (2018) showed that a female robot can lead to better learning in female students while breaking stereotypical beliefs. Rosenberg-Kima et al. (2019) showed that social robots can serve as teaching assistants by answering simple questions of students working in small groups.

 

In this contribution we report on a higher education application of social robots as small group facilitators. Our goal was to compare the current state, in which an instructor attempts to facilitate several groups in the classroom, to a robot facilitator that is more limited in terms of emotional and cognitive capabilities yet remains with the group for the entire activity to facilitate it. An undergraduate course group activity that summarizes the material taught during a full semester has been converted into an interaction facilitated by a social robot, Nao, and mediated by tablets. Groups of four students performed the group activity, followed the instructions of the robot facilitator, discussed the material, and then answered questionnaires about the interaction. The same groups performed similar activities with tablets alone and with pen-and-paper, facilitated by the instructor of the course (within-subject design). Their impressions of the different activities' modalities are reported.

 

Read More

Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained
here and / or the use of such content is in your opinion infringing, Contact us as soon as possible >>